以下文章轉(zhuǎn)載自:
American Journal of Neuroradiology
Presurgical Mapping with fMRI and DTI: Soon the Standard of Care?
The technique of fMRI has been around for over 30 years, and DTI for about 15 years. The first application of fMRI was by Ogawa et al, in 1990. In a rat model, this team was able to manipulate the blood oxygen level–dependent (BOLD) signal by inducing changes in deoxyhemoglobin concentrations with insulin-induced hypoglycemia and anesthetic gases. About a year later, Kwong and Belliveau published the first images of cerebral areas that responded to visual stimulation and vision-related tasks.
DTI was first described by Basser et al, who were experimenting on a voxel-by-voxel characterization of 3D diffusion profiles, which took into account anisotropic effects (instead of eliminating them, as in standard DWI). Tractography (or fiber tracking) was developed by applying statistical models to DTI data to obtain anatomic fiber bundle information.
Although both fMRI and DTI are now currently available in most scanners, well beyond the framework of academic institutions and research protocols, these techniques are not quite considered “standard of care.” Indeed, the processes that govern the translation of new technology into clinical practice are complex. Even more complex are the processes that lead to establishing clinical practice as standard of care, particularly at a time when established patterns of care delivery are being increasingly challenged and economic difficulties affect all aspects of society, certainly including health care.
However, some challenges, especially with fMRI, go back to basic cerebrovascular physiology. The cerebrovascular response to neuronal activation, also referred to as “functional hyperemia,” was first recognized in 1890 by Roy and Sherrington, who initially proposed a metabolic hypothesis to the phenomenon, ie, mediation via release from neurons of vasoactive agents in the extracellular space. The major role of astrocytes as key intermediaries in the neurovascular response — being interposed between blood vessels and neuronal synapses via their foot processes as modeled in the “tripartite synapse model” of the neurovascular unit — has since been recognized. Although complex, astrocyte response to changes in synaptic activity is primarily mediated by glutamate receptors through changes in intracellular Ca2+ concentration.
In fMRI, contrast is based on the BOLD effect, which reflects local shifts of deoxygenated-to-oxygenated hemoglobin ratios due to local increases in blood flow in excess of oxygen utilization following brain activity. As a result, the foundation of the fMRI BOLD signal is based on local changes in cerebral blood flow that are not linearly related to the metabolic changes inducing the flow change.
Therefore, BOLD fMRI rests on 3 major approximations: 1) the technique does not directly reflect neural activity, ie, generation and propagation of action potentials, synaptic transmission, or neurotransmitter release/uptake; 2) the changes in BOLD signal originate from that portion of the vasculature experiencing the greatest change in oxygen concentration, which occurs in the venules in the immediate vicinity of the active neurons; and 3) more importantly, fMRI signal relies on intact “neurovascular coupling,” the phenomenon that links neural activity to metabolic demand and blood flow changes.
The main reason fMRI is clinically useful most of the time is that under most circumstances neurovascular coupling remains fully intact, unaltered by confounding disorders that can interfere with this relationship. However, it has long been known that neuronal activation results in local blood flow increases that exceed local oxygen consumption, so that the oxygen utilized may constitute a small fraction of the amount delivered. Under normal conditions, the oxygen concentration in draining venules increases during neuronal activation. The original researchers who discovered this phenomenon named it “neurovascular uncoupling” or “neurovascular decoupling.” From a medical perspective, “uncoupling” or “decoupling” implies a pathologic condition, suggesting something abnormal about tissue that demonstrates this phenomenon. More recently, researchers have preferred the term “functional hyperemia” to describe the phenomenon. In fact, when there is interference with the mechanism producing functional hyperemia, the term "neurovascular uncoupling" has been re-applied, albeit with a completely opposite meaning from that originally used. Impairment in the flow response leads to neurovascular uncoupling and a reduced BOLD signal in response to neural activity, which can lead to false-negative errors in fMRI maps.
John Ulmer, reporting on a series of 50 patients, found that although accurate cortical activation could be demonstrated most of the time, various cerebral lesions could cause false negatives in fMRI results when compared with other methods of functional localization, suggesting contralateral or homotopic reorganization of function. He further suggested that pathologic mechanisms such as direct tumor infiltration, neovascularity, cerebrovascular inflammation, and hemodynamic effects from high-flow vascular lesions (ie, arteriovenous malformations and fistulas) could trigger “neurovascular uncoupling” in those patients. Neurovascular uncoupling, and other pitfalls of fMRI, are briefly discussed.
David Mikulis discusses “neurovascular uncoupling syndrome,” where lack of functional hyperemia during neuronal activation can have long-term consequences on the integrity of the tissue in the absence of acute ischemia.
Jay Pillai discusses the successful clinical application of a technique to improve the consistency of BOLD fMRI by using a breath-holding technique.
Aaron Field discusses the technique, clinical use, and some limitations of DTI and tractography, and describes patterns of alteration of white matter fiber tracts by neoplasms and other lesions.
Lastly, Wade Mueller shows that a neurosurgeon may obtain significant improvements in clinical outcomes and a drastic reduction in complication rates when working with a team that provides presurgical mapping of cerebral lesions by using fMRI and DTI (wisely, fully acknowledging their limitations) and when various team members clearly communicate using a common language.
Functional MRI and DTI are extremely useful techniques that have become increasingly available to neuroradiologists in recent years. As with any technique, these work best as parts of a whole. A good understanding of physiologic mechanisms is necessary to make us good “functional” specialists, and a good understanding of the limitations of any technique is necessary to make us better physicians.
Image modified from: Jellison BJ, Field AS, Medow J, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns.
關(guān)于大腦的奧秘你了解多少呢?人腦、豬腦、狗腦……不同物種的大腦有什么區(qū)別?進(jìn)入“動物腦樂園”~一起探索3D大腦吧!https://www.huashan.org.cn/BrainZool“動物腦樂園”是由復(fù)旦大學(xué)神經(jīng)外科研究所腦功能實(shí)驗(yàn)室創(chuàng)建的一個科普網(wǎng)站,運(yùn)用先進(jìn)的三維攝像技術(shù),展示了獼猴大腦以及人腦、豬腦、羊腦等共十二種動物的腦標(biāo)本,使我們可以突破時間和空間的限制,隨時隨地學(xué)習(xí)解剖學(xué)知識,直觀的了解和感受大腦的性狀、質(zhì)地等信息,避免只見樹木不見森林的困境。在大腦三維展示界面,我們可以通過鼠標(biāo)或觸控板來旋轉(zhuǎn)、縮放每一個動物的腦標(biāo)本,從任何一個角度進(jìn)行觀察,就像該腦標(biāo)本在我們面前一樣!直觀的感受不同動物大腦的性狀和大小,并與人腦進(jìn)行比較。在人類大腦三維展示界面,我們不僅可以細(xì)致的觀察到每一條溝回,還可以通過點(diǎn)擊相應(yīng)區(qū)域的編碼,查看其位置和負(fù)責(zé)的功能,從而加深對大腦結(jié)構(gòu)的理解。值得一提的是,在“動物腦樂園”里,不僅可以觀察到獼猴3D腦標(biāo)本,還可以看到獼猴的全腦切片。吳勁松教授團(tuán)隊(duì)從同一猴腦的離體MRI及全腦組織切片髓鞘染色(LFB)數(shù)據(jù)集中,間隔800μm取一層,構(gòu)建了集合組織切片髓鞘染色(LFB)、組織切片髓鞘染色-偽彩化、斷層標(biāo)本圖、高分辨率MRI結(jié)構(gòu)像及離體腦dMRI斷層纖維束成像和纖維方向分布圖(限制球面反卷積-CSD)六大模態(tài)的斷層對照圖譜。我們只需要點(diǎn)擊相應(yīng)的解剖名稱,就可以在圖譜上對應(yīng)位置顯示標(biāo)記,同時可與另外兩大模態(tài)的dMRI方向性信息進(jìn)行對照,極大的方便了我們的觀看。使用“動物腦樂園”不僅方便我們了解不同物種大腦結(jié)構(gòu)的差異,還可以使腦解剖結(jié)構(gòu)的學(xué)習(xí)不再枯燥和抽象,激發(fā)我們對神經(jīng)科學(xué)的興趣!快來“樂園”里探索奧秘吧~關(guān)于復(fù)旦大學(xué)神經(jīng)外科研究所腦功能實(shí)驗(yàn)室(https://www.huashan.org.cn/wulab/):該實(shí)驗(yàn)室是吳勁松教授團(tuán)隊(duì)在周良輔院士和毛穎教授的倡導(dǎo)下,依托臨床神經(jīng)外科建立的腦科學(xué)研究平臺和創(chuàng)新轉(zhuǎn)化技術(shù)平臺。實(shí)驗(yàn)室圍繞“腦功能精確定位、保護(hù)和康復(fù)”這一核心目標(biāo),整合應(yīng)用多模態(tài)技術(shù)(神經(jīng)導(dǎo)航、術(shù)中實(shí)時影像、腦功能成像、腦電、術(shù)中神經(jīng)電生理監(jiān)測、經(jīng)顱磁刺激等),開展腦科學(xué)的臨床轉(zhuǎn)化研究;同時利用神經(jīng)外科醫(yī)生“與大腦直接對話”的技術(shù)優(yōu)勢,開展?jié)h語語言等高級神經(jīng)認(rèn)知的機(jī)制研究。吳勁松教授2010年赴美國Mayo Clinic進(jìn)修,已發(fā)表學(xué)術(shù)論文300余篇,其中SCI論文138余篇,主編出版專著2部,副主編出版專著2部,其中《神經(jīng)導(dǎo)航外科學(xué)》獲“上海市圖書獎二等獎”(2009)和“第二屆中國出版政府獎圖書獎提名獎”(2010);獲得計算機(jī)軟件著作權(quán)1項(xiàng);授權(quán)國家發(fā)明專利12項(xiàng)。曾獲中華醫(yī)學(xué)科技獎二等獎(2023)、上海市科技進(jìn)步一等獎(2016)、教育部科技進(jìn)步一等獎(2014)、中華醫(yī)學(xué)科技獎一等獎(2009)。其中,吳勁松教授2023年獲得的中華醫(yī)學(xué)科技獎二等獎,是與深圳市美德醫(yī)療電子技術(shù)有限公司共同完成的《腦腫瘤精準(zhǔn)外科技術(shù)體系的建立與腦功能保護(hù)研究》。該項(xiàng)目研發(fā)出的美德腦功能定位保護(hù)系統(tǒng),包含用于術(shù)前的腦功能視聽覺刺激系統(tǒng)和用于術(shù)中的腦功能術(shù)中信息刺激系統(tǒng),實(shí)現(xiàn)了個體化腦功能區(qū)精準(zhǔn)定位與保護(hù)。不論是術(shù)前視聽覺刺激系統(tǒng)還是術(shù)中信息刺激系統(tǒng),都配備了一整套的軟件系統(tǒng),包含13個常用標(biāo)準(zhǔn)任務(wù),可根據(jù)病灶具體部位實(shí)現(xiàn)個體化的任務(wù)選擇。美德腦功能定位保護(hù)系統(tǒng)為用戶提供了更加穩(wěn)定、便捷的操作,極大地方便了臨床醫(yī)生的臨床診治和科研人員的研究探索,讓磁共振腦功能檢查和腦科學(xué)研究更安全、高效,推動腦疾病診治和相關(guān)臨床科研的深入發(fā)展。
為滿足廣大用戶對功能磁共振成像技術(shù)(fMRI)的應(yīng)用需求,幫助磁共振腦成像領(lǐng)域臨床醫(yī)生、科研工作者、研究生群體快速掌握腦功能課題的實(shí)驗(yàn)任務(wù)設(shè)計、影像數(shù)據(jù)處理和分析的基本原理和實(shí)操方法。4月12日至14日,由美德醫(yī)療主辦的第13屆Task-fMRI基礎(chǔ)培訓(xùn)班在深圳總部成功舉辦!特邀深圳大學(xué)心理學(xué)院成曉君教授、王超教授、林正龍教授等一線青年學(xué)者進(jìn)行授課,講解fMRI的基礎(chǔ)知識,介紹常用數(shù)據(jù)處理工具,帶教實(shí)驗(yàn)設(shè)計、任務(wù)編寫和數(shù)據(jù)處理全流程操作,采用了實(shí)踐操作與理論講解相結(jié)合的教學(xué)方式,注重培養(yǎng)學(xué)員的自主操作能力,幫助學(xué)員們深入理解Task-fMRI技術(shù)的原理和應(yīng)用。培訓(xùn)班濟(jì)濟(jì)一堂,廣大學(xué)員皆對腦科學(xué)有著高度的學(xué)習(xí)熱情和探究精神,為Task-fMRI相關(guān)知識和技能的掌握及應(yīng)用,奠定了堅實(shí)的基礎(chǔ)。為期三天緊湊而豐富的教學(xué)及實(shí)操課程,讓一眾學(xué)員們表示受益匪淺,更是積極與講師深入交流解己所惑。未來,美德醫(yī)療將繼續(xù)開展影像技術(shù)培訓(xùn),促進(jìn)相關(guān)知識和技能的普及和應(yīng)用,并持續(xù)將客戶需求轉(zhuǎn)化到產(chǎn)品優(yōu)化與技術(shù)服務(wù)!
重大喜訊,2024年04月07日,美德醫(yī)療自主研發(fā)的“磁共振病人監(jiān)護(hù)儀”成功獲批廣東省藥品監(jiān)督管理局頒發(fā)的《醫(yī)療器械注冊證》。該產(chǎn)品的上市,標(biāo)志著美德醫(yī)療成為國產(chǎn)無磁監(jiān)護(hù)領(lǐng)域首家注冊上市的企業(yè),不僅彰顯了我司對磁兼容醫(yī)療設(shè)備研發(fā)的專業(yè)技術(shù)實(shí)力,也意味著美德醫(yī)療邁入了一個更高標(biāo)準(zhǔn)、更高起點(diǎn)、更高層次的新平臺,為更多的患者和醫(yī)療機(jī)構(gòu)提供磁共振環(huán)境下安全、高效、先進(jìn)的整體解決方案!未來,我們將不斷提升產(chǎn)品質(zhì)量和服務(wù)水平,繼續(xù)加大研發(fā)投入,推動技術(shù)創(chuàng)新和產(chǎn)品升級,為醫(yī)療影像事業(yè)的發(fā)展貢獻(xiàn)更多的智慧和力量!
2024年3月29日-31日,由電子科技大學(xué)生命科學(xué)與技術(shù)學(xué)院、四川省醫(yī)學(xué)科學(xué)院?四川省人民醫(yī)院聯(lián)合主辦的“首屆天府孤獨(dú)癥腦科學(xué)國際論壇”在電子科技大學(xué)清水河校區(qū)成功舉辦。本次會議邀請了從事孤獨(dú)癥研究的神經(jīng)科學(xué)、遺傳學(xué)、心理認(rèn)知學(xué)和臨床、康復(fù)領(lǐng)域的國內(nèi)外知名專家,面向廣大關(guān)注孤獨(dú)癥的科研人員、臨床醫(yī)生和相關(guān)家庭,從行為、分子、環(huán)路、腦影像及醫(yī)學(xué)干預(yù)與行為矯正等多層面解析孤獨(dú)癥的機(jī)制及精確診斷與治療的前沿方法。大會還組織家長-專家圓桌討論,為孤獨(dú)癥家庭與孤獨(dú)癥研究領(lǐng)域?qū)<覀兲峁┟鎸γ嫣接懙臋C(jī)會,以及舉辦“星星集市”、“湖畔音樂會”等公益活動,展示“來自星星的孩子”的獨(dú)特藝術(shù)天賦。美德醫(yī)療特別贊助本次會議,并攜腦科學(xué)相關(guān)產(chǎn)品亮相現(xiàn)場,吸引了諸多學(xué)者同仁前來交流,不少在場的老師和醫(yī)生對美德醫(yī)療腦功能視聽覺刺激儀在科研及臨床上的貢獻(xiàn)給出了高度評價。未來,美德醫(yī)療將堅持科學(xué)探索,不斷優(yōu)化產(chǎn)品,為推進(jìn)國內(nèi)孤獨(dú)癥研究領(lǐng)域多學(xué)科協(xié)同發(fā)展,促進(jìn)孤獨(dú)癥腦影像技術(shù)產(chǎn)學(xué)研用成果轉(zhuǎn)化貢獻(xiàn)力量!
隨著社會就業(yè)形勢日漸嚴(yán)峻,國家大力加強(qiáng)關(guān)于促進(jìn)高校畢業(yè)生就業(yè)的工作部署,為積極響應(yīng)國家政策,貫徹產(chǎn)教融合與高校共謀發(fā)展,我司也迎來了深圳技術(shù)大學(xué)健康與環(huán)境工程學(xué)院副院長康雁教授等一眾老師及學(xué)生的訪企拓崗促就業(yè)專項(xiàng)行動。美德醫(yī)療創(chuàng)始人湯潔女士對康教授一行人的到訪表示熱烈歡迎,通過共同參觀我司的文化展廳、研發(fā)中心、生產(chǎn)倉儲等實(shí)體產(chǎn)業(yè)規(guī)模,向大家詳細(xì)介紹了美德的成長歷程、企業(yè)文化、專研領(lǐng)域、公司榮譽(yù)、發(fā)展方向等等。在充分了解美德目前的發(fā)展現(xiàn)狀之后,雙方就我司的人才需求結(jié)合學(xué)校的人才培養(yǎng)展開了深入的交流,作為深圳專精特新的技術(shù)企業(yè),我司由磁共振第三方部件源頭制作供應(yīng),對產(chǎn)業(yè)鏈前端-硬件的研發(fā)極其看重。美德大家庭的每一位成員,對公司有著極高的認(rèn)同和歸屬感,鉆研與熱愛并行,技能與素養(yǎng)同在。借此交流機(jī)會,希望能與深圳技術(shù)大學(xué)加強(qiáng)合作共同培養(yǎng)專項(xiàng)人才,貼近技術(shù)發(fā)展契合市場需求,為學(xué)生的實(shí)習(xí)實(shí)訓(xùn)就業(yè)提供更多機(jī)會,實(shí)現(xiàn)校企緊密聯(lián)系、資源共享、合作共贏!